# Accurate Object Location Upgrading in Computer Network Based Virtual Reality Using Clustering Techniques

Hala Husham Nussrat<sup>1</sup>, Taymoor Husham Nussrat<sup>2</sup>

<sup>1</sup>Al-mustansiriyah University, College of Engineering, Baghdad, Iraq

<sup>2</sup> Baghdad College of Economic Sciences University, Financial and Banking Department, Baghdad, Iraq

<sup>1</sup> taymoor.h.nussrat@baghdadcollege.edu.iq

## Abstract

Most of the functions imbedded on virtual reality systems are highly dependent on positioning algorithm. system need to be designed in such way that accurate positioning can be ensured while object movements. Indoor positioning system is imposing great challenge since it cannot be linked to GPS system. Hence, location optimization and positioning process at indoor systems need to be performed using own (internal) positioning algorithms that depends on local sensors integrated with the mobile object itself. The results shown that total consumption time (which was used as performance metric to judge the used algorithms) is maximum with Spearman method which was equal to 0.0661 seconds whereas it is far less when Correlation method is used (equal to 0.0234 second).

**Keywords:** Robotics, KNN, Correlation, Positioning, GPS, Time Delay.

# **1 INTRODUCTION**

The technology development led to new approaches that facilitates human life such as robots where machines are depended to solve daily problems of human. The revolution of information technology and computer programming is greatly expanded especially when internet and mobile networks evolved. The number of internet user is largely increased which makes knowledge granting is easier than anytime. Hence, technology of localizing was amongst the concerns of positioning engineering where device need to move as accurate as possible reaching the destination point.

Positioning technology is utilized the machines alike Direct Current (DC) motors in order to perform automatic tasks that difficult to be performed by human. Positioning were used in very accurate industries such as electronics and chip manufacturing as well as in heavy industries alike automobiles. Most of the functions imbedded on positioning systems are highly dependent on positioning algorithm. system need to be designed in such way that accurate positioning can be ensured while object movements.

Geographical location and positioning signaling (GPS) is one of the leading technologies for positioning in the outdoor environments. This system is determining the object location by sending the signal from the GPS handset/sensor to the satellite or even using the mobile/cellular towers in the vicinity. In this chapter, problem statement about indoor positioning system where the challenges facing the indoor positioning system are listed. The objectives and thesis organization are also listed.

Indoor positioning system is imposing great challenge since it cannot be linked to GPS system. Hence, location optimization and positioning process at indoor systems need to be performed using own (internal) positioning algorithms that depends on local sensors integrated with the mobile object itself.

Manuscript received on: 03.07.2022 Accepted on: 13.08.2022 Published on: 30.09.2022 Issue DOI: doi.org/10.52688/14

## **2 PROBLEM STATEMENT**

Positioning system at indoor locality is suspected to the below challenges:

1. sensors calibration problem where the responses for same event can be differs. This is an electronic issue which impact the accuracy of the position that sensors are yielding. Utmost, no sensor can provide the location coordination as such. In more cases, infrared sensor is sued which shoot beams on the four directions and decide whither any of the direction is available i.e. (no obstacles are placed). Those sensors are big time consumers which apply extra payload to the positioning system [2].

2. other sensors alike accelerometer and gyroscope are also in use for location detection, such sensors are producing large amount of information, in other word, the accelerometer and gyroscope sensors are generating large amount of geographical coordination which need supper processing power for addressing the burst of information.

3. difficulty in integration of artificial intelligence (AI) i.e. machine learning and deep learning to the machinery systems in real-life especially while using the device arm in surgeries and medical applications. There was a risk factor introduced in the literature where the AI technology cannot be relied at all real-life applications.

4. even-though, AI applications are intervened in location detection (positioning) systems, challenges are arisen since the data sources are limited where the training of AI models can not be complied [4].

5. training of AI model with particular data at known noise level may server the purpose unless more noise impact is applied to the data which increases the shift between the train and test data and hence trigger more errors at the results.

# **3 METHODOLOGY**

The K-Nearest Neighborhood and distance equation with specified threshold are used to solve the uncertainty problem

and to specify the node that is close to device location. a mobile vehicle traverses an unknown environment; while doing so, distance meter and compass measure its own movement, and the laser detects external objects or features in this environment, with which all these sensors build nodes in the map. These nodes are concurrently used to get localized in it. The distance meter and compass are used to calculate the device position in X and Y Cartesian coordinate by increase the meter when the compass mentions to the north or east and decrease the meter when the compass mentions to the south or west.

In this experiment, eight similarity measurement techniques were used for identifying the moving oath of the object namely Jaccard, Euclidean, Cityblock, Chebychev, Cosine, Correlation and Validation. The similarity of path is differing in each mentioned techniques in accordance to the x-axis and y-axis coordination as shown in Table 1 and Table 2.

| Similarity measurement | Execution Time<br>(Second) |
|------------------------|----------------------------|
| Jaccard                | 0.000414                   |
| Euclidean              | 0.000528                   |
| Cityblock              | 0.000573                   |
| Chebychev              | 0.000361                   |
| Cosine                 | 0.000405                   |
| Spearman               | 0.000661                   |
| Correlation            | 0.000234                   |
| Variation              | 0.000376                   |

The mentioned approaches are made the similarity measure and hence the time taken by each technique for evaluation of the similarity of paths is illustrated in Table 1. The same can be illustrated in Figure 3.



Figure 3: Time consumption by different path similarity detection approaches.

| Y   | X  | jaccard   | euclidean | Cityblock | Chebychev | Cosine      | Spearman  | Correlation | Variation   |
|-----|----|-----------|-----------|-----------|-----------|-------------|-----------|-------------|-------------|
| 583 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 582 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 581 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 580 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 579 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 523 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 522 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 521 | 94 | 1         | 10.488088 | 18        | 9         | 0.037025641 | 0.2525907 | 0.9535013   | 51.75867769 |
| 520 | 94 | 0.8333333 | 9.591663  | 16        | 8         | 0.031589644 | 0.2284315 | 0.960277    | 55.57884298 |
| 519 | 94 | 0.875     | 11.045361 | 20        | 9         | 0.043989395 | 0.6431051 | 0.943728    | 137.5438017 |
| 518 | 94 | 0.875     | 8.8317609 | 18        | 7         | 0.027858222 | 0.4561798 | 0.9644625   | 153.1371901 |
| 517 | 94 | 0.7142857 | 10.77033  | 18        | 8         | 0.041800834 | 0.3010339 | 0.9465368   | 138.3887603 |
| 516 | 94 | 0.625     | 8.7177979 | 16        | 7         | 0.026456355 | 0.5207315 | 0.9665393   | 142.1401653 |
| 515 | 94 | 0.75      | 2.4494897 | 6         | 1         | 0.001577486 | 0.2903947 | 0.9981986   | 92.24595041 |
| 514 | 94 | 0.5714286 | 6.78233   | 12        | 5         | 0.015717357 | 0.3174273 | 0.9802304   | 50.23338843 |
| 513 | 94 | 0.5555556 | 23.537205 | 40        | 20        | 0.215947569 | 0.5640112 | 0.7163217   | 75.21322314 |
| 504 | 94 | 0.5714286 | 22.045408 | 34        | 16        | 0.17339363  | 0.3309436 | 0.7788719   | 86.56066116 |
| 503 | 94 | 0.5714286 | 20.639767 | 32        | 15        | 0.153467884 | 0.3309436 | 0.8037439   | 74.7292562  |
| 502 | 94 | 0.5714286 | 17.832555 | 28        | 13        | 0.116019045 | 0.3309436 | 0.8510767   | 56.18380165 |

Table 2: Numerical results of the techniques used for location detection of moving object.

| 501 | 94 | 0.5714286 | 15.033296 | 24 | 11 | 0.08267536  | 0.3309436 | 0.8937819 | 44.4614876  |
|-----|----|-----------|-----------|----|----|-------------|-----------|-----------|-------------|
| 500 | 94 | 0.5714286 | 8.1240384 | 14 | 6  | 0.02303826  | 0.3174273 | 0.9708266 | 45.00694215 |
| 499 | 94 | 0.5714286 | 5.4772256 | 10 | 4  | 0.009978264 | 0.3174273 | 0.9875555 | 57.16561983 |
| 498 | 94 | 0.5714286 | 5.4772256 | 10 | 4  | 0.009978264 | 0.3174273 | 0.9875555 | 57.16561983 |
| 497 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 496 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 495 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 494 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 493 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 492 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 491 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 490 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 489 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 488 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 487 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 486 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 485 | 94 | 0.4285714 | 2.4494897 | 4  | 2  | 0.002076248 | 0.3174273 | 0.9973748 | 101.9523967 |
| 456 | 94 | 0.75      | 14.142136 | 24 | 12 | 0.071627523 | 0.2619655 | 0.9087776 | 32.89719008 |
| 455 | 94 | 0.5714286 | 19.235384 | 30 | 14 | 0.134296796 | 0.3309436 | 0.8278832 | 64.60363636 |
| 454 | 94 | 0.5714286 | 20.639767 | 32 | 15 | 0.153467884 | 0.3309436 | 0.8037439 | 74.7292562  |
| 453 | 94 | 0.5714286 | 22.045408 | 34 | 16 | 0.17339363  | 0.3309436 | 0.7788719 | 86.56066116 |
| 452 | 94 | 0.5714286 | 23.452079 | 36 | 17 | 0.193934919 | 0.3309436 | 0.7534741 | 100.0978512 |

## 4 CONCLUSION

Path detection for moving objects such as positioning is vital for project success, with the development of machine learning approaches, the process of positioning are become more feasible and more accurate. In this project, path detection of moving objects is being made in order to avoid the collisions of the robots. Simulation of the same was performed in Matlab and this experiment, eight similarity measurement techniques were used for identifying the moving oath of the object namely Jaccard, Euclidean, Cityblock, Chebychev, Cosine, Correlation and Validation. The results shown that total consumption time (which was used as performance metric to judge the used algorithms) is maximum with Spearman method which was equal to 000661 seconds whereas it is far less when Correlation method is used (equal to 000234 second).

4

## **5 REFERENCES**

- T. Jeyaprakash, "A Tactical Information Management System for Unmanned Vehicles Using Vehicular Adhoc Networks," 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, IEEE, 2013.
- [2] N. Islam, " A Novel Approach to Service Discovery in Mobile AdhocNetwork," 978-1-4244-2152-7/08/\$25.OO©C2008IEEE.
- [3] P. Tomer, "An Application of Routing Protocols for Vehicular Ad-hoc Networks," 2010 International Conference on Networking and Information Technology, IEEE.
- [4] A. Nayyar, "Flying Adhoc Network (FANETs): Simulation Based Performance Comparison of Routing Protocols: AODV, DSDV, DSR, OLSR, AOMDV and HWMP," 978-1-5386-3060-0/18/\$31.00 ©2018 IEEE.
- [5] V. K. Tripathi, "Secure Communication with Privacy Preservation in VANET- Using Multilingual Translation," Proceedings of 2015 Global Conference on Communication Technologies(GCCT 2015), IEEE.
- [6] N. Karyemsetty, "Design and Deployment of Vehicle Tracking System in VANETs using Xbee Pro:

Prototype Model," 2015 International Conference on Communication Networks (ICCN), IEEE.

- [7] A. Rahim, "Relevance Based Approach with Virtual Queue for Vehicular Adhoc Networks," COMSATS Institute of Information Technology, Islamabad, Pakistan & IEEE.
- [8] P. S. A. Bharath, "Collision Avoidance System in Vehicular Adhoc Network Utilizing Dichotomized Headway Model," 2014 International Conference on Circuit, Power and Computing Technologies [ICCPCT], IEEE.
- [9] Y. K. S. I. R. S. S. O. Eiji Takimoto, "Evaluation of Multi-Channel Flooding for Inter-Vehicle Communication," IEEE International Conference on Advanced Information Networking and Applications.
- [10] V. B. Vaghela, "Novel Routing Protocol for Vehicular Adhoc Networks," 2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing.
- [11] F.-Y. Tan, "The Network Capacity Issues on Designing Routing Protocol of Vehicular Ad hoc Network," 978-1-4673-6850-6/15 \$31.00 © 2015 IEEE DOI 10.1109/ICISCE.2015.117.
- [12] K.-I. K. Beom-Su Kim, "Hierarchical Routing for Unmanned Aerial Vehicle Relayed Tactical Ad Hoc Networks," 2018 IEEE 15th International Conference on Mobile Ad-hoc and Sensor Systems, IEEE.
- [13] T. A. KUMAR, "A Reliable Path Selection For Vehicular Adhoc Network Using Reliability Matrix and Connectivity Matrix," IEEE International Conference on Engineering and Technology (ICETECH), 17th& 18thMarch 2016, Coimbatore, TN, India..
- [14] H.-W. W. Tseng-Yi Chen\*, "An Efficient Routing Algorithm to Optimize the Lifetime of Sensor Network Using Wireless Charging Vehicle," IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems.
- [15] J. L. Joey Anda1, "VGrid: Vehicular AdHoc Networking and Computing Grid for Intelligent Traffic Control," 0-7803-8887-9/05/\$20.00 (c)2005 IEEE.
- [16] M. I. H. Zannatul Naim, "Performance Analysis of AODV, DSDV And DSR in Vehicular Adhoc Network(VANET)," IEEE International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST).
- [17] Y. L. M. Z. W. Wang, "Intermittently Connected Vehicle-to-Vehicle Networks: Detection and Analysis," IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2011 proceedings..
- [18] K. Singh, "Threat Modeling for Multi-UAV Adhoc Networks," Proc. of the 2017 IEEE Region 10

Conference (TENCON), Malaysia, November 5-8, 2017.